

Effekter av sprengstein på fisk 16.03.2022 Emelie Skogsberg

Norwegian University of Life Sciences

Statens vegvesen

Norwegian Public Roads Administration

Presentasjons oversikt

- Bakgrunn
- Overordnede mål
 - Delmål
- Sprengstein fra tunnel driving
- Fiskeforsøk

Contractor -

Statens vegvesen Norwegian Public Roads Administration

Norwegian University of Life Sciences

Bakgr		<complex-block></complex-block>	
Parameter	Grenseverdi for STS i utløp	Grenseverdi for STS i resipient	
Suspendert tørrstoff (STS)	400mg/l	100mg/l	
		••	

1. Naturlig, eroderte partikler kontra sprengstein

1. Naturlig, eroderte partikler kontra sprengstein

2. Mineralogi påvirker morfologi

1. Naturlig, eroderte partikler kontra sprengstein

2. Mineralogi påvirker morfologi

3. Ikke morfologi eller mineralogi

1. Naturlig, eroderte partikler kontra sprengstein

2. Mineralogi påvirker morfologi

3. Ikke morfologi eller mineralogi

En partikkel er en liten del av <u>hva som helst</u>

1. Naturlig, eroderte partikler kontra sprengstein

2. Mineralogi påvirker morfologi

3. Ikke morfologi eller mineralogi

4. Få studier

Overordnet mål

Effekter av sprengsteins partikler fra vei- og tunnelkonstruksjon i akvatisk biota

Delmål

Morfologisk og geokjemisk karakterisering av sprengstein

> Effekter av sprengstein i laks

Delmål

Morfologisk og geokjemisk karakterisering av sprengstein

> Effekter av sprengstein i laks

Påvirker mineralogi morfologi til sprengstein?

n=711 263

n=711 263

*Samlet inn av NVE

Er eroderte partikler mer runde og mindre kantete enn sprengstein?

Delmål

Morfologisk og geokjemisk karakterisering av sprengstein

> Effekter av sprengstein i laks

Verket & Rafoss

192h Sublethal effekter Juvenil Atlantisk laks (Salmo salar) Partikkel størrelse 0.4-400µm (80% <63µm)

Verket

0 mg/L	100	400	800	2000	3500	5000
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
100%	100%	100%	100%	100%	100%	100%
overlevelse	overlevelse	overlevelse	overlevelse	overlevelse	dødlighet	dødlighet
192h	192h	192h	192h	192h	<48h	<24h

Verket						
0 mg/L	100 mg/L	400 mg/L	800 mg/L	2000 mg/L	3500 mg/L	5000 mg/L
100% overlevelse 192h	100% overlevelse 192h	100% overlevelse 192h	100% overlevelse 192h	100% overlevelse 192h	100% dødlighet <48h	100% dødlighet <24h
Rafoss						
0 mg/L	100	400	800	1400	2000	2600
	∣ mg/∟	mg/L	∣ mg/L	∣ mg/∟	∣ mg/∟	∣ mg/∟

µCT (X-ray micro-computed tomography)

> Studerer den tredimensjonale naturen til geologiske og biologiske material

µCT bilder fra Jakub Jaroszewicz (Warszawa Teknologiske Universitet) og Ole Christian Lind (NMBU)

µCT bilder fra Jakub Jaroszewicz (Warszawa Teknologiske Universitet) og Ole Christian Lind (NMBU)

Takk for oppmerksomheten

Takk til

- Veilederteam Sondre, Lene og Hans-Christian
- Medforfattere og kolleger ved NIVA og isotoplaboratoriet og fiskelaboratoriet ved NMBU
- Hans-Christian Teien for støtte og hjelp under fiskeforsøkene
 - Disseksjonsteam: Aurora Hansen, Erica Maremonti, Estela Reinoso Maset, Hans-Christian Teien, Thea Oma og Yetneberk Ayalew Kassaye
 - µCT-analyse av Jakub Jaroszewicz (Fakultet for materialvitenskap og ingeniørvitenskap, Warszawa teknologiske universitet) og Ole Christian Lind (NMBU)
- Innsamling og DIA-analyse av partikler fra Ravinebekken av Norges vassdrags- og energidirektorat.

Norwegian Institute for Water Research

Statens vegvesen Norwegian Public Roads Administration

Refranser

Liu, E. J., Cashman, K. V., & Rust, A. C. (2015). Optimising shape analysis to quantify volcanic ash morphology. GeoResJ (Amsterdam), 8, 14-30. doi:10.1016/j.grj.2015.09.001

Cioni, R., Pistolesi, M., Bertagnini, A., Bonadonna, C., Hoskuldsson, A., & Scateni, B. (2014). Insights into the dynamics and evolution of the 2010 Eyjafjallajökull summit eruption (Iceland) provided by volcanic ash textures. Earth and planetary science letters, 394, 111-123. doi:10.1016/j.epsl.2014.02.051

Leibrandt, S., & Le Pennec, J.-L. (2015). Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications. Journal of volcanology and geothermal research, 297, 11-27. doi:10.1016/j.jvolgeores.2015.03.014

WHO(1985). The WHO/EURO man-made mineral fiber reference scheme. Scandinavian Journal of Work, Environment & Health, 11(2), 123-129. Retrieved from https://www.jstor.org/stable/40965197

Norwegian Institute for Water Research

Statens vegvesen Norwegian Public Roads Administration

Experiments

Contaminants

- Particles from blasting/drilling
- Metals leaching
 from the particles
- Oil spills from machinery

Physical interaction with gills

Interaction with gills

Interact with biomolecules and enzymes

Gene expression (EROD, CYP1A, MT) Effect respiration Effect osmoregulation

Blood chemistry (in situ measurements of ions, hematocrit, hemoglobin, glucose, respiration gases)

Oxidative stress

Gene expression (LPO, SOD, GST)

Effects

Mechanical damage

DNA damage

Micronucleus (MN)

Histopathological examinations (morphological changes, mucus cells, immunohistochemistry)

Experiments

P

Contaminants

- Particles from blasting/drilling
- **Metals** leaching from the particles
- Oil spills from machinery

Interact with/and uptake by gills

Uptake by stomach

Uptake

Imaging (X-ray microcomputed tomography- µCT and ESEM)

Uptake by kidney, liver and spleen

	Size measurement	Abbreviation	Definition			DIA vs SIA
	Minimum Feret diameter	Fmin	Shortest distance between two lines tangential to the particle outline			Same measurement
	Maximum Feret diameter	Fmax	Maximum distance between two parallel lines tangential to the particle outline			Same measurement
	Area of the particle	A _p	Area of the pixels in the particle			Same measurement
	Area of the convex hull	A _{ch}	Area of the pixels in the convex hull			Same measurement
	Perimeter of the particle	P _p	Length of the outside boundary of the particle			Not measured in DIA
	Perimeter of the convex hull	P _{ch}	Length of the outside boundary of the convex hull			Not measured in DIA
	Diameter of the circle of equal projection area	D _{EQPC}	Diameter of the circle having the same area as the particle's projection		Same measurement	
	Shape parameters	Abbreviation	Formula	Sensitivity to	Refence	DIA vs SIA
Norwegian University of Life Sciences	Aspect ratio	AR	/ F _{min} /F _{max}	Form	(<u>Liu et al.,</u> <u>2015</u>) and references herein	Same calculation
	Solidity	SLD	A _p /A _{ch}	Roughness (morphological roughness)	(<u>Cioni et al.,</u> 2014; <u>Leibrandt & Le</u> <u>Pennec, 2015;</u> <u>Liu et al.,</u> 2015)	Same calculation*
	Convexity	CVX	P_{ch}/P_p	Surface texture (textual roughness)	(Leibrandt & Le Pennec, 2015; Liu et al., 2015)	Not calculated in DIA
	Fibers		$\geq 3 F_{max}/F_{min} \ni$		(<u>MMMF, 1985</u>)	Same calculation

